# Predominance of SARS-CoV-2 Variants of Concern, 501Y.V1 and 501Y.V2 at the Kenyan Coast

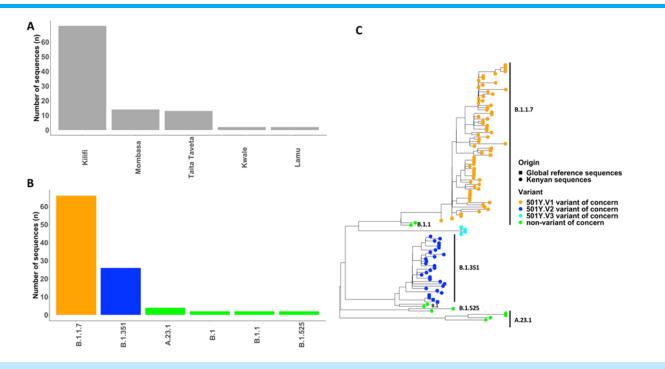
#### **Key Points**

- We sequenced 102 SARS-CoV-2 PCR positive samples collected between 23<sup>rd</sup> March-9<sup>th</sup> April 2021 from 5 counties in the coast region (Kilifi (n=71), Mombasa (n=14), Taita Taveta (n=13), Kwale (n=2) and Lamu (n=2)).
- A total of 94 (92.2%) out of the 102 samples were classified as variants of concern (VOC); 501Y.V1 (n=66) and 501Y.V2 (n=28).
- A total of 96 PCR positive samples were obtained from individuals who had no confirmed history of recent international travel and of these 89 (92.7%) were classified as VOC.

#### Background

Between 12<sup>th</sup> March and 27<sup>th</sup> March 2021, we reported genome sequences of two variants of concern (VOC); 501Y.V1 (n=49) and 501Y.V2 (n=37) from SARS-CoV-2 PCR positive samples collected from the Kenya coast. The majority of these were isolated from individuals presenting at points of entry (PoE), but some were isolated from individuals without a history of recent travel (policy brief #14). Here we report sequences from more recent samples, to investigate the possible spread of the two VOCs in the region.

#### Findings from sequence data obtained on 16<sup>th</sup> April 2021


We sequenced a total of 102 SARS-CoV-2 positive samples from across five coastal counties (Kilifi (n=71), Mombasa (n=14), Taita Taveta (n=13), Kwale (n=2) and Lamu (n=2)) collected between 23rd March and 9th April 2021 **(Figure)**. We used the two main classifications systems for SARS-CoV-2 genomes (i.e. the Pango and the NextStrain clade classification). We classified the genome sequences into 6 Pango lineages and 5 NextStrain clades; B.1.1.7 (NextStrain clade 501Y.V1; n=66), B.1.351 (NextStrain clade 501Y.V2; n=26), A.23.1 (n=4), B.1 (n=2), B.1.525 (n=2) and B.1.1 (n=2) **(Figure)**.

The samples were dominated by VOCs comprising 92.2% (n=94) of the 102 sequenced samples. 501Y.V1 occurred in 64.7% (n=66) samples while 501Y.V2 occurred in in 27.5% (n=28) of the samples. There were 96 PCR positive samples from individuals without history of recent travel and of these 62 (64.6%) were VOC 501Y.V1 and 27 (28.1%) were VOC 501Y.V2. Hence, our genomic surveillance provides evidence that local spread of SARS-CoV-2 is dominated by VOCs 501Y.V1 (B.1.1.7) and 501Y.V2 (B.1.351) across the coastal region **(Table).** 

Two sequences that were classified as lineage B.1 contained 5 amino acid changes in the spike protein i.e D80A, K417N, N501Y, D614G, A701V. In addition, we report detection of a variant of interest (VOI), B.1.525 (n=2) which has the E484K amino acid change, also present in the B.1.351 VOC and known to aid immune evasion. Four sequences (2 from Taita Taveta, 1 from Lamu and 1 from Mombasa) were assigned lineage A.23.1, a dominant lineage in Kampala Uganda based on a recent report which has also been assigned VOI status [1]. A detailed breakdown of mutations is shown in the **Appendix**.

**Table:** Basic epidemiological characteristics of SARS-CoV-2 Rt-PCR positive samples collected from at the coast.

|                                 | 501Y.V1 (n =66)    | 501Y.V2<br>(n=28) | Variants of Interest<br>(i.e. uncertain<br>significance) #(n=6) | Variants of no<br>Concern* (n=2) |  |  |  |
|---------------------------------|--------------------|-------------------|-----------------------------------------------------------------|----------------------------------|--|--|--|
| County                          |                    |                   |                                                                 |                                  |  |  |  |
| Kilifi                          | 50                 | 19                | 2                                                               | 0                                |  |  |  |
| Mombasa                         | 6                  | 6                 | 1                                                               | 1                                |  |  |  |
| Taita Taveta                    | 9                  | 2                 | 2                                                               | 0                                |  |  |  |
| Kwale                           | 1                  | 0                 | 0                                                               | 1                                |  |  |  |
| Lamu                            | 0                  | 1                 | 1                                                               | 0                                |  |  |  |
| Travel History                  |                    |                   |                                                                 |                                  |  |  |  |
| With history of travel          | 4                  | 1                 | 0                                                               | 1                                |  |  |  |
| Local                           | 62                 | 27                | 6                                                               | 1                                |  |  |  |
| *Variants of no Concern:, B.1.1 |                    |                   |                                                                 |                                  |  |  |  |
| #Variants of interest: A.       | 23.1 and , B.1.525 |                   |                                                                 |                                  |  |  |  |



**Figure: Analysis of 102 SARS-CoV-2 sequences from samples collected between 23rd March and 9th April 2021.** (A) A bar plot showing the geographical distribution of the 102 sequenced samples by county (x-axis). (B) A bar plot showing the frequency of lineages (x-axis) circulating in five counties in coastal Kenya based on the 102 sequences. (C) A phylogenetic tree of 102 SARS-CoV-2 sequences from samples collected between 23rd March-9th April 2021 from six coastal counties to gether with 12 reference sequences. The tree diagram shows the relationship between the sequenced genomes (circular tip-points) and the global variants of concern (square tippoints).

## Implications

These data suggest that two of the three major SARS-CoV-2 variants of concern (i.e. 501Y.V1 and 501Y.V2) have become the predominant strains in circulation in the coast region of Kenya, with 501Y.V1 most common of the two. Both these two VOC reported are documented to have considerably higher transmissibility compared to the original SARS-CoV-2 Wuhan strain and have been reported to have potential to either more efficiently evade pre-existing natural or vaccine immunity [2] or cause more severe disease [3].

### Recommendations

- Continued genomic surveillance of SARS-CoV-2 surveillance across the coastal region.
- Emphasize to the rapid response team (RRT) to collect complete epidemiological information during sample collection, for example recent travel histories.
- There is need to revise the case investigation forms to capture details such as previous testing history and vaccination history to put the VOC infections in proper context.

# Data availability

Whole-genome sequence data will be available from the GISAID database to allow access to the global scientific community.

# References

- 1. D. Lule Bugembe, M. VTPhan, I. Ssewanyana, et al., A SARS-CoV-2 lineage A variant (A.23.1) with altered spike has emerged and is dominating the current Uganda epidemic , MedRxiv. (2021) 2021.02.08.21251393. https://doi.org/10.1101/2021.02.08.21251393.
- 2. D. Zhou, W. Dejnirattisai, P. Supasa, C. Liu, A.J. et al., Evidence of escape of SARS-CoV-2 variant B.1.351 from natural and vaccine-induced sera, Cell. (2021) 1–14. https://doi.org/10.1016/j.cell.2021.02.037.
- 3. N.G. Davies, C.I. Jarvis, K. van Zandvoort, et al., Increased mortality in community-tested cases of SARS-CoV-2 lineage B.1.1.7, Nature. (2021). https://doi.org/10.1038/s41586-021-03426-1.

#### **Acknowledgements:**

This work was supported by the National Institute for Health Research (NIHR) (project references 17/63/82 and 16/136/33) using UK aid from the UK Government to support global health research, The UK Foreign, Commonwealth and Development Office and Wellcome Trust (grant# 102975; 220985). The views expressed in this publication are those of the author (s) and not necessarily those of NIHR, the Department of Health and Social Care, Foreign Commonwealth and Development Office, Wellcome Trust or the UK government. In addition, this work was spported by the KEMRI Internal Research Grant (Grant # KEMRI/COV/SPE/012.

This work is supported by the Rapid Response Teams (RRTs) from Kwale, Taita Taveta, Mombasa, Kilifi, Tana River, and Lamu and the dedicated effort from the various health care and testing facilities across the coast region and the country at large.



KEMRI Wellcome Trust

**Appendix:** A summary of epidemiological characteristics of SARS-CoV-2 RT-PCR positive samples collected between 23<sup>rd</sup> March and 09<sup>th</sup> April 2021 from five counties in the coastal regions of Kenya. The entries are sorted chronologically from the earliest sample based on the date of sample collection.

| Serial | NextStrain  | Pango   | date_collected | County          | Gender | Age     | Mutations of interest in the                |
|--------|-------------|---------|----------------|-----------------|--------|---------|---------------------------------------------|
| 1      | Clade       | Lineage | 22/02/2021     | <b>T</b> . '4.  | NA-L-  | (Years) | spike region                                |
| 1      | 20I/501Y.V1 | B.1.1.7 | 23/03/2021     | Taita<br>Taveta | Male   | 53      | N501Y, A570D, D614G,<br>P681H               |
| 2      | 20I/501Y.V1 | B.1.1.7 | 23/03/2021     | Taita<br>Taveta | Male   | 50      | N501Y, A570D, D614G,<br>P681H               |
| 3      | 20I/501Y.V1 | B.1.1.7 | 23/03/2021     | Kwale           | Female | 30      | N501Y, A570D, D614G,<br>P681H               |
| 4      | 19B         | A.23.1  | 24/03/2021     | Taita<br>Taveta | Male   | 2       | None                                        |
| 5      | 20I/501Y.V1 | B.1.1.7 | 24/03/2021     | Taita<br>Taveta | Female | 22      | N501Y, A570D, D614G,<br>P681H               |
| 6      | 20I/501Y.V1 | B.1.1.7 | 25/03/2021     | Kilifi          | Male   | 22      | N501Y, A570D, D614G,<br>P681H               |
| 7      | 19B         | A.23.1  | 25/03/2021     | Lamu            | Male   | 29      | None                                        |
| 8      | 20H/501Y.V2 | B.1.351 | 26/03/2021     | Mombasa         | Male   | 18      | D80A, K417N, N501Y,<br>D614G, A701V         |
| 9      | 20H/501Y.V2 | B.1.351 | 26/03/2021     | Mombasa         | Male   | 22      | D80A, K417N, N501Y,<br>D614G, A701V         |
| 10     | 20I/501Y.V1 | B.1.1.7 | 28/03/2021     | Mombasa         | Male   | 51      | N501Y, A570D, D614G,<br>P681H               |
| 11     | 20I/501Y.V1 | B.1.1.7 | 28/03/2021     | Mombasa         | Female | 51      | N501Y, A570D, D614G,<br>P681H               |
| 12     | 20H/501Y.V2 | B.1     | 28/03/2021     | Mombasa         | Male   | 15      | D80A, K417N, N501Y,<br>D614G, A701V         |
| 13     | 20H/501Y.V2 | B.1.351 | 28/03/2021     | Mombasa         | Female | 40      | D80A, K417N, N501Y,<br>D614G, A701V         |
| 14     | 20I/501Y.V1 | B.1.1.7 | 28/03/2021     | Mombasa         | Male   | 25      | N501Y, A570D, D614G,<br>P681H               |
| 15     | 19B         | A.23.1  | 28/03/2021     | Taita<br>Taveta | Male   | 57      | E484K                                       |
| 16     | 20H/501Y.V2 | B.1.351 | 29/03/2021     | Kilifi          | Female | 32      | D80A, K417N, E484K,<br>N501Y, D614G, A701V  |
| 17     | 20H/501Y.V2 | B.1.351 | 29/03/2021     | Kilifi          | Male   | 7       | D80A, K417N, E484K,                         |
| 18     | 20I/501Y.V1 | B.1.1.7 | 29/03/2021     | Kilifi          | Male   | 66      | N501Y, D614G, A701V<br>N501Y, A570D, D614G, |
| 19     | 20H/501Y.V2 | B.1.351 | 29/03/2021     | Kilifi          | Male   | 37      | P681H<br>D80A, K417N, E484K,                |
| 20     | 20H/501Y.V2 | B.1.351 | 29/03/2021     | Kilifi          | Male   | 36      | N501Y, D614G, A701V<br>D80A, K417N, E484K,  |
| 21     | 20H/501Y.V2 | B.1.351 | 29/03/2021     | Kilifi          | Male   | 37      | N501Y, D614G, A701V<br>D80A, K417N, E484K,  |
| 22     | 20I/501Y.V1 | B.1.1.7 | 29/03/2021     | Kilifi          | Male   | 40      | N501Y, D614G, A701V<br>N501Y, A570D, D614G, |
| 23     | 20I/501Y.V1 | B.1.1.7 | 29/03/2021     | Kilifi          | Female | 27      | P681H<br>N501Y, D614G, P681H                |
| 24     | 20I/501Y.V1 | B.1.1.7 | 29/03/2021     | Kilifi          | Male   | 36      | N501Y, A570D, D614G,<br>P681H               |

| 25 | 20I/501Y.V1 | B.1.1.7 | 29/03/2021 | Kilifi          | Female | 28 | N501Y, A570D, D614G,<br>P681H              |
|----|-------------|---------|------------|-----------------|--------|----|--------------------------------------------|
| 26 | 20I/501Y.V1 | B.1.1.7 | 29/03/2021 | Kilifi          | Male   | 40 | N501Y, A570D, D614G,<br>P681H              |
| 27 | 20I/501Y.V1 | B.1.1.7 | 29/03/2021 | Kilifi          | Female | 43 | N501Y, A570D, D614G,<br>P681H              |
| 28 | 20H/501Y.V2 | B.1.351 | 29/03/2021 | Kilifi          | Male   | 47 | D80A, K417N, E484K,<br>N501Y, D614G, A701V |
| 29 | 20H/501Y.V2 | B.1.351 | 29/03/2021 | Kilifi          | Male   | 38 | D80A, K417N, E484K,<br>N501Y, D614G, A701V |
| 30 | 20I/501Y.V1 | B.1.1.7 | 29/03/2021 | Kilifi          | Female | 47 | N501Y, A570D, D614G,<br>P681H              |
| 31 | 20I/501Y.V1 | B.1.1.7 | 29/03/2021 | Kilifi          | Male   | 32 | N501Y, A570D, D614G,<br>P681H              |
| 32 | 20I/501Y.V1 | B.1.1.7 | 29/03/2021 | Kilifi          | Female | 33 | N501Y, A570D, D614G,<br>P681H              |
| 33 | 20H/501Y.V2 | B.1.351 | 29/03/2021 | Kilifi          | Male   | 56 | D80A, K417N, E484K,<br>N501Y, D614G, A701V |
| 34 | 20I/501Y.V1 | B.1.1.7 | 29/03/2021 | Taita<br>Taveta | Male   | 1  | N501Y, A570D, D614G,<br>P681H              |
| 35 | 20I/501Y.V1 | B.1.1.7 | 29/03/2021 | Taita<br>Taveta | Male   | 63 | N501Y, A570D, D614G,<br>P681H              |
| 36 | 20I/501Y.V1 | B.1.1.7 | 29/03/2021 | Taita<br>Taveta | Female | 32 | N501Y, A570D, D614G,<br>P681H              |
| 37 | 20H/501Y.V2 | B.1.351 | 30/03/2021 | Kilifi          | Female | 54 | D80A, K417N, E484K,<br>N501Y, D614G, A701V |
| 38 | 20H/501Y.V2 | B.1.351 | 30/03/2021 | Kilifi          | Female | 49 | D80A, K417N, E484K,<br>N501Y, D614G, A701V |
| 39 | 19B         | A.23.1  | 30/03/2021 | Mombasa         | Male   | 40 | None                                       |
| 40 | 20I/501Y.V1 | B.1.1.7 | 30/03/2021 | Mombasa         | Male   | 25 | N501Y, A570D, D614G,<br>P681H              |
| 41 | 20I/501Y.V1 | B.1.1.7 | 30/03/2021 | Kilifi          | Male   | 54 | N501Y, A570D, D614G,<br>P681H              |
| 42 | 20I/501Y.V1 | B.1.1.7 | 30/03/2021 | Kilifi          | Male   | 43 | N501Y, A570D, D614G,<br>P681H              |
| 43 | 20I/501Y.V1 | B.1.1.7 | 30/03/2021 | Kilifi          | Male   | 51 | N501Y, A570D, D614G,<br>P681H              |
| 44 | 20I/501Y.V1 | B.1.1.7 | 30/03/2021 | Kilifi          | Male   | 32 | N501Y, A570D, D614G,<br>P681H              |
| 45 | 20I/501Y.V1 | B.1.1.7 | 30/03/2021 | Kilifi          | Male   | 50 | N501Y, A570D, D614G,<br>P681H              |
| 46 | 20I/501Y.V1 | B.1.1.7 | 30/03/2021 | Kilifi          | Male   | 56 | N501Y, A570D, D614G,<br>P681H              |
| 47 | 20I/501Y.V1 | B.1.1.7 | 30/03/2021 | Taita<br>Taveta | Female | 48 | N501Y, A570D, D614G,<br>P681H              |
| 48 | 20I/501Y.V1 | B.1.1.7 | 30/03/2021 | Taita<br>Taveta | Male   | 52 | N501Y, A570D, D614G,<br>P681H              |
| 49 | 20H/501Y.V2 | B.1.351 | 30/03/2021 | Taita<br>Taveta | Male   | 40 | D80A, K417N, E484K,<br>N501Y, D614G, A701V |
| 50 | 20H/501Y.V2 | B.1.351 | 30/03/2021 | Taita<br>Taveta | Male   | 24 | D80A, K417N, E484K,<br>N501Y, D614G, A701V |
| 51 | 20H/501Y.V2 | B.1     | 30/03/2021 | Lamu            | Female | NA | D80A, K417N, N501Y,<br>D614G, A701V        |
|    |             |         | 1          | Kilifi          | Male   | 42 | N501Y, A570D, D614G,                       |

| 53 | 20I/501Y.V1 | B.1.1.7 | 31/03/2021 | Kilifi  | Male   | 67 | N501Y, A570D, D614G,<br>P681H              |
|----|-------------|---------|------------|---------|--------|----|--------------------------------------------|
| 54 | 20I/501Y.V1 | B.1.1.7 | 31/03/2021 | Kilifi  | Female | 87 | N501Y, A570D, D614G,<br>P681H              |
| 55 | 20I/501Y.V1 | B.1.1.7 | 31/03/2021 | Kilifi  | Female | 33 | N501Y, A570D, D614G,<br>P681H              |
| 56 | 20I/501Y.V1 | B.1.1.7 | 31/03/2021 | Kilifi  | Male   | 38 | N501Y, A570D, D614G,<br>P681H              |
| 57 | 20H/501Y.V2 | B.1.351 | 31/03/2021 | Kilifi  | Female | 51 | D80A, K417N, E484K,<br>N501Y, D614G, A701V |
| 58 | 20I/501Y.V1 | B.1.1.7 | 31/03/2021 | Kilifi  | Male   | 25 | N501Y, A570D, D614G,<br>P681H              |
| 59 | 20H/501Y.V2 | B.1.351 | 31/03/2021 | Kilifi  | Male   | 57 | D80A, K417N, E484K,<br>N501Y, D614G, A701V |
| 60 | 20H/501Y.V2 | B.1.351 | 31/03/2021 | Kilifi  | Male   | 29 | D80A, K417N, E484K,<br>N501Y, D614G, A701V |
| 61 | 20I/501Y.V1 | B.1.1.7 | 31/03/2021 | Kilifi  | Female | 19 | N501Y, A570D, D614G,<br>P681H              |
| 62 | 20I/501Y.V1 | B.1.1.7 | 31/03/2021 | Kilifi  | Female | 43 | N501Y, A570D, D614G,<br>P681H              |
| 63 | 20I/501Y.V1 | B.1.1.7 | 31/03/2021 | Kilifi  | Male   | 40 | N501Y, A570D, D614G,<br>P681H              |
| 64 | 20I/501Y.V1 | B.1.1.7 | 01/04/2021 | Kilifi  | Male   | 56 | N501Y, A570D, D614G,<br>P681H              |
| 65 | 20I/501Y.V1 | B.1.1.7 | 01/04/2021 | Kilifi  | Female | 35 | N501Y, A570D, D614G,<br>P681H              |
| 66 | 20I/501Y.V1 | B.1.1.7 | 01/04/2021 | Kilifi  | Female | 66 | N501Y, A570D, D614G,<br>P681H              |
| 67 | 20I/501Y.V1 | B.1.1.7 | 01/04/2021 | Kilifi  | Male   | 71 | N501Y, A570D, D614G,<br>P681H              |
| 68 | 20I/501Y.V1 | B.1.1.7 | 01/04/2021 | Kilifi  | Male   | 4  | N501Y, A570D, D614G,<br>P681H              |
| 69 | 20I/501Y.V1 | B.1.1.7 | 01/04/2021 | Kilifi  | Female | 38 | N501Y, A570D, D614G,<br>P681H              |
| 70 | 20I/501Y.V1 | B.1.1.7 | 01/04/2021 | Kilifi  | Male   | 34 | N501Y, A570D, D614G,<br>P681H              |
| 71 | 20I/501Y.V1 | B.1.1.7 | 01/04/2021 | Kilifi  | Male   | 36 | N501Y, A570D, D614G,<br>P681H              |
| 72 | 20I/501Y.V1 | B.1.1.7 | 01/04/2021 | Kilifi  | Male   | 38 | N501Y, A570D, D614G,<br>P681H              |
| 73 | 20I/501Y.V1 | B.1.1.7 | 01/04/2021 | Kilifi  | Male   | 43 | N501Y, A570D, D614G,<br>P681H              |
| 74 | 20I/501Y.V1 | B.1.1.7 | 01/04/2021 | Kilifi  | Male   | 28 | N501Y, A570D, D614G,<br>P681H              |
| 75 | 20I/501Y.V1 | B.1.1.7 | 01/04/2021 | Mombasa | Male   | 33 | N501Y, A570D, D614G,<br>P681H              |
| 76 | 20B         | B.1.1   | 01/04/2021 | Mombasa | Na     | 43 | N501Y, D614G                               |
| 77 | 20I/501Y.V1 | B.1.1.7 | 02/04/2021 | Kilifi  | Na     | 49 | N501Y, A570D, D614G,<br>P681H              |
| 78 | 20H/501Y.V2 | B.1.351 | 02/04/2021 | Kilifi  | Male   | 29 | D80A, K417N, N501Y,<br>D614G, A701V        |
| 79 | 20H/501Y.V2 | B.1.351 | 02/04/2021 | Kilifi  | Male   | 36 | D80A, K417N, E484K,<br>N501Y, D614G, A701V |
| 80 | 20B         | B.1.1   | 02/04/2021 | Kwale   | Male   | 41 | N501Y, A570D, D614G                        |
| 81 | 20I/501Y.V1 | B.1.1.7 | 05/04/2021 | Kilifi  | Female | 27 | N501Y, A570D, D614G,<br>P681H              |

| 82  | 20I/501Y.V1 | B.1.1.7 | 05/04/2021 | Kilifi          | Female | 52 | N501Y, A570D, D614G,<br>P681H              |
|-----|-------------|---------|------------|-----------------|--------|----|--------------------------------------------|
| 83  | 20A         | B.1.525 | 06/04/2021 | Kilifi          | Male   | 10 | E484K, D614G                               |
| 84  | 20H/501Y.V2 | B.1.351 | 06/04/2021 | Kilifi          | Female | 27 | N501Y, A570D, D614G,<br>P681H              |
| 85  | 20I/501Y.V1 | B.1.1.7 | 06/04/2021 | Kilifi          | Male   | NA | N501Y, A570D, D614G,<br>P681H              |
| 86  | 20I/501Y.V1 | B.1.1.7 | 06/04/2021 | Kilifi          | Female | 46 | N501Y, A570D, D614G,<br>P681H              |
| 87  | 20I/501Y.V1 | B.1.1.7 | 06/04/2021 | Kilifi          | Male   | 16 | N501Y, A570D, D614G,<br>P681H              |
| 88  | 20H/501Y.V2 | B.1.351 | 07/04/2021 | Kilifi          | Female | 29 | D80A, K417N, E484K,<br>N501Y, D614G, A701V |
| 89  | 20H/501Y.V2 | B.1.351 | 07/04/2021 | Kilifi          | Male   | 39 | D80A, K417N, E484K,<br>N501Y, D614G, A701V |
| 90  | 20I/501Y.V1 | B.1.1.7 | 07/04/2021 | Kilifi          | Male   | 48 | N501Y, A570D, D614G,<br>P681H              |
| 91  | 20A         | B.1.525 | 07/04/2021 | Kilifi          | Female | 45 | E484K, D614G                               |
| 92  | 20I/501Y.V1 | B.1.1.7 | 08/04/2021 | Kilifi          | Male   | 56 | N501Y, A570D, D614G,<br>P681H              |
| 93  | 20I/501Y.V1 | B.1.1.7 | 08/04/2021 | Kilifi          | Male   | 58 | N501Y, A570D, D614G,<br>P681H              |
| 94  | 20H/501Y.V2 | B.1.351 | 08/04/2021 | Kilifi          | Female | 38 | D80A, K417N, E484K,<br>N501Y, D614G, A701V |
| 95  | 20I/501Y.V1 | B.1.1.7 | 08/04/2021 | Kilifi          | Male   | 29 | N501Y, A570D, D614G,<br>P681H              |
| 96  | 20I/501Y.V1 | B.1.1.7 | 08/04/2021 | Kilifi          | Male   | 39 | N501Y, A570D, D614G,<br>P681H              |
| 97  | 20I/501Y.V1 | B.1.1.7 | 08/04/2021 | Taita<br>Taveta | Female | 45 | N501Y, D614G, P681H                        |
| 98  | 20I/501Y.V1 | B.1.1.7 | 09/04/2021 | Kilifi          | Female | 32 | N501Y, A570D, D614G,<br>P681H              |
| 99  | 20I/501Y.V1 | B.1.1.7 | 09/04/2021 | Kilifi          | Female | 48 | N501Y, A570D, D614G,<br>P681H              |
| 100 | 20I/501Y.V1 | B.1.1.7 | NA         | Mombasa         | Na     | NA | N501Y, A570D, D614G,<br>P681H              |
| 101 | 20H/501Y.V2 | B.1.351 | NA         | Mombasa         | Na     | NA | D80A, K417N, E484K,<br>N501Y, D614G, A701V |
| 102 | 20H/501Y.V2 | B.1.351 | NA         | Mombasa         | Na     | NA | D80A, K417N, E484K,<br>N501Y, D614G, A701V |